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Abstract

Data mining is an emerging research area, whose goal is to extract significant patterns
or interesting rules from large databases. High-level inference from large volumes of
routine business data can provide valuable information to businesses, such as cus-
tomer buying patterns, shelving criterion in supermarkets and stock trends. Many
algorithms have been proposed for data mining of association rules. However, research
so far has mainly focused on sequential algorithms.

In this paper we present parallel algorithms for data mining of association rules,
and study the degree of parallelism, synchronization, and data locality issues on the
SGI Power Challenge shared-memory multi-processor. We further present a set of
optimizations for the sequential and parallel algorithms. Experiments show that a
significant improvement of performance is achieved using our proposed optimizations.
We also achieved good speed-up for the parallel algorithm, but we observe a need for
parallel I/O techniques for further performance gains.
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1 Introduction

With large volumes of routine business data having been collected, business orga-
nizations are increasingly turning to the extraction of useful information from such
databases. Such high-level inference process may provide information on customer
buying patterns, shelving criterion in supermarkets, stock trends, etc. Data mining is
an emerging research area, whose goal is to extract significant patterns or interesting
rules from such large databases.

Data mining is in fact a broad area which combines research in machine learn-
ing, statistics and databases. It can be broadly classified into three main categories
[1): Classification — finding rules that partition the database into disjoint classes;
Sequences — extracting commonly occurring sequences in temporal data; and Associ-
ations — find the set of most commonly occurring groupings of items. In this paper
we will concentrate on data mining for association rules.

The problem of mining association rules over basket data was introduced in [2].
Basket data usually consists of a record per customer with a transaction date, along
with items bought by the customer. An example of an association rule over such a
database could be that 80% of the customers that bought bread and milk, also bought
eggs. The data mining task for association rules can be broken into two steps. The
first step consists of finding all the sets of items, called as itemsets, that occur in
the database with a certain user-specified frequency, called minimum support. Such
itemsets are called large itemsets. An itemset of k items is called a k-itemset. The
second step consists of forming implication rules among the large itemsets found in
the first step. The general structure of most algorithms for mining association rules
is that during the initial pass over the database the support for all single items (1-
itemsets) is counted. The large 1-itemsets are used to generate candidate 2-itemsets.
The database is scanned again to obtain occurrence counts for the candidates, and
the large 2-itemsets are selected for the next pass. This iterative process is repeated
for k = 3,4, -, until there are no more large k-itemsets to be found.

1.1 Related Work

Many algorithms for finding large itemsets have been proposed in the literature since
the introduction of this problem in [2] (AIS algorithm). In [7] a pass minimization
approach was presented, which uses the idea that if an itemset belongs to the set of
large (k + e)-itemsets, then it must contain (k}:e) k-itemsets. The Apriori algorithm
[4] also uses the property that any subset of a large itemset must itself be large.
These algorithms had performance superior to AIS. Newer algorithms with better
performance than Apriori were presented in [8, 10]. The DHP algorithm [8] uses a
hash table in pass k to do efficient pruning of (k+1)-itemsets. The Partition algorithm

[10] minimizes I/O by scanning the database only twice. In the first pass it generates
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the set of all potentially large itemsets, and in the second pass the support for all
these is measured. The above algorithms are all specialized black-box techniques
which do not use any database operations. Algorithms using only general-purpose
DBMS systems and relational algebra operations have also been proposed [5, 6).

There has been very limited work in parallel implementations of association al-
gorithms. In [9], a parallel implementation of the DHP algorithm [8] is presented.
However only simulation results on a shared-nothing or distributed-memory machine
like IBM SP2 were presented. Parallel implementations of the Apriori algorithm on
the IBM SP2 were presented in [3]. There has been no study on shared-everything or
shared-memory machines to-date. In this paper we present parallel implementations
of the Apriori algorithm on the SGI Power Challenge shared-memory multi-processor.
We study the degree of parallelism, synchronization, and data locality issues in par-
allelizing data mining applications for such architectures. We also present a set of
optimizations for the sequential Apriori algorithm, and for the parallel algorithms as
well.

The rest of the paper is organized as follows. In the next section we formally
present the problem of finding association rules, and briefly describe the Apriori
algorithm. Section 3 presents a discussion of the parallelization issues for each of
the steps in the algorithm, while section 4 presents some effective optimizations for
mining association rules. Section 5 presents our experimental results for the different
optimization and the parallel performance. Finally we conclude in section 6.

2 Sequential Data Mining

We now present the formal statement of the problem of mining association rules over
basket data. The discussion below closely follows that in [2, 4].

Let T = {i1,12, - ,%m} be a set of m distinct attributes, also called items. Each
transaction T in the database D of transactions, has a unique identifier /D, and
contains a set of items, such that T C Z. An assoctation rule is an expression A = B,
where itemsets A, B C Z, and AN B = (. Each itemset is said to have a support
s if s% of the transactions in D contain the itemset. The association rule is said
to have confidence ¢ if ¢% of the transactions that contain A also contain B, i.e.,
¢ = support(A U B)/support(A), i.e., the conditional probability that transactions
contain the itemset B, given that they contain itemset A. For example, we may have
that 80% of the customers that bought bread and milk also bought eggs. The number
80% is the confidence of the rule, while the support of the rule is support(A U B).
Data mining of association rules from such databases consists of finding the set of all
such rules which meet the user-specified minimum confidence and support values.

The task of data mining for association rules can be broken into two steps:

1. Find all the large k-itemsets for &k = 1,2, --.
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2. Generate rules from these large itemsets. Given that X is a large k-itemset, for
every non-empty subset A C X, a rule of the form A = B is generated, where
B = X — A, and provided that this rule has the required confidence. We refer
the reader to [4] for more detail on rule generation. Henceforth, we will deal
only with the first step.

In this paper we will discuss the parallelization of the Apriori algorithm on the
SGI Challenge shared-memory machine. We begin by presenting a brief discussion of
the algorithm.

2.1 The Apriori Algorithm

The naive method of finding large itemsets would be to generate all the 2™ subsets
of the universe of m items, count their support by scanning the database, and output
those meeting minimum support criterion. It is not hard to see that the naive method
exhibits complexity exponential in m, and is quite impractical. Apriori follows the
basic iterative structure discussed earlier. However the key observation used is that
any subset of a large itemset must also be large. During each iteration of the algorithm
only candidates found to be large in the previous iteration are used to generate a new
candidate set to be counted during the current iteration. A pruning step eliminates
any candidate which has a small subset. The algorithm terminates at step ¢, if there
are no large t-itemsets. The general structure of the algorithm is given in figure
1, and a brief discussion of each step is given below (for details on its performance
characteristics, we refer the reader to [4]). In the figure L; denotes the set of large
k-itemsets, and C}, the set of candidate k-itemsets.

L, = {large 1-itemsets };
for (k =2;Lk—1 # 0;k++)
/*¥Candidate Itemsets generation*/

Ci = Set of New Candidates;
/*Support Counting*/
for all transactions ¢t € D
for all k-subsets s of ¢
if (s € Ck) s.count + +;
/*Large Itemsets generation®/
Ly = {c € Cilc.count > minimumsupport};
Set of all large itemsets = Uy Li; .

Figure 1: The Aprior: Algorithm




e Candidate Itemsets Generation: The candidates Cj for the k-th pass are
generated by joining Lg._; with itself, which can be expressed as:

Cr = {z |z[l:k-2]=A1:k—-2]=B[1:k-2], z[k—1] = Ak - 1],
z[k] = B[k — 1], A[k —1] < B[k — 1}, where A,B € Li1}

where z[a : b] denotes items at index a through b in itemset z. Before inserting
z into Cy, we test whether all (k — 1)-subsets of « are large. This pruning step
eliminates any itemset at least one of whose subsets is not large. The candidates
are stored in a hash tree to facilitate fast support counting. An interior node
of the hash tree at depth d contains a hash table whose cells point to nodes at
depth d+ 1. The size of the hash table, also called the fan-out, is denoted as F.
All the itemsets are stored in the leaves. To insert an itemset in C, we start at
the root, and at depth d we hash on the d-th item in the itemset until we reach
a leaf. If the number of itemsets in that leaf exceeds a threshold value, that
node is converted into an internal node. We would generally like the fan-out to
be large, and the threshold to be small, to facilitate fast support counting. The
maximum depth of the tree in iteration k is k.

e Support Counting: To count the support of candidate k-itemsets, for each
transaction T in the database, we form all k-subsets of T' in lexicographical
order. This is done by starting at the root and hashing on items 0 through
(n — k + 1) of the transaction. If we reach depth d by hashing on item 2 then

we hash on items ¢ through (n — k + 1) + d. This is done recursively, until we
reach a leaf. At this point we increment the count of all itemsets in the leaf
that are contained in the transaction (note: this is the reason for having a small

threshold value).

e Large Itemsets Generation: Each itemset in Cy with minimum support is
inserted into Ly, a sorted linked-list denoting the large k-itemsets. Ly is used
in generating the candidates in the next iteration.

We now present a simple example of how Apriori works. Let the database, D =
{T, = (1,4,5), T> = (1,2),Ts = (3,4,5),T4 = (1,2,4,5)}. Let the minimum support
value M S = 2. Running through the iterations, we get

Ly = {{1},{2},{4},{5}}

C, = {{1,2},{1,4},{1,5},{2,4},{2,5}, {4,5}}
L, = {{172}7{174}’{175}’{4’5}}

Cz = {{1,4,5}}

Ly = {{1,4,5}}

Note that while forming Cs by joining L, with itself, we get three potential candidates,
{1,2,4}, {1,2,5}, and {1,4,5}. However only {1,4,5} is a true candidate, and the
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first two are eliminated in the pruning step, since they have a 2-subset which is not
large (the 2-subset {2,4}, and {2, 5} respectively).

3 Parallel Data Mining: Design Issues

In this section we present the design issues in parallel data mining for association
rules on shared memory architectures. We separately look at each of the three steps
- candidate generation, support counting, and large itemsets generation.

3.1 Candidate Itemsets Generation
Optimized Join and Pruning

Recall that in iteration k, C} is generated by joining Li_; with itself. For example,
let Ly = {AB,AC,AD,AE,BE, BF, BG, DE}. The naive way of doing the join is to
look at all (g) = 28 combinations. However, since L;_; is lexicographically sorted, we
partition the itemsets in Lj_; into equivalence classes based on their common k — 2
prefixes, i.e., the equivalence class of @ € Lj_,, is given as

[a] = {b€ Li_y]a[l : k— 2] = b1 : k — 2]}

The partition of L, above would give us the equivalence classes: Sy = [A] = {AB, AC,-
AD,AE}, S; = [B] = {BE,BF,BG}, and S; = [D] = {DE}. Let Z([X]) =
{6k — 1]{6 € [X]}, denote the items at the (k — 1)-st position. Then Z([A]) =
{B,C,D,E}, Z([B]) = {E, F,G}, and Z([D]) = {E}. k-itemsets are formed only
from items within a class by taking all (IS2.'I) item pairs and prefixing them with the
class identifier. For example, consider the items in Z([B]). By choosing all pairs, we
get EF, EG, and F'G, and after prefixing the class identifier we obtain the candidates
BEF, BEG, and BFG. (note: any equivalence class with a single element (e.g. Ss)
cannot produce a new itemset. Thus such classes can be eliminated from the gener-
ation step. However we must still retain them for the pruning step). We thus only

have to look at (Z) + (;) = 6 + 3 = 9 combinations. In general we have to consider

o (l‘Z"I) combinations instead of (IL"2“|> combinations.

While pruning a candidate we have to check if all k of its (k — 1)-subsets are large.
Since the candidate is formed by an item pair from the same class, we need only check
for the remaining k& — 2 subsets. Furthermore, assuming all S; are lexicographically
sorted, these k& — 2 subsets must come from classes greater than the current class.
Thus, to generate a candidate, there must be at least k — 2 equivalence classes after
a given class. In other words we need consider only the first n — (k — 2) equivalence
classes. We can even further refine the estimate of how many classes follow a given

3




class by considering only those classes with elements greater than any of the item
pairs. For example, there is no need to form 3-itemsets from S,. Consider the result
of join of items E and F, which produces EF. Although there is a class after [B],
namely [C], since it is lexicographically smaller than EF" we can safely reject Sy from
further consideration.

Adaptive Hash Table Size (F) : Having equivalence classes also allows us to
accurately adapt the hash table size F for each iteration. For iteration k, and for a
given threshold value T, i.e., the maximum number of k-itemsets per leaf, the total
L-itemsets that can be inserted into the tree is given by the expression: TF k. Since
we can insert upto Y i—g (|52‘|> itemsets, we get the expression: TF* > 3i, (lSQ‘I).

This can be solved to obtain:
n 15| 1/k
1=0 ( 2 )
F>|———

Computation Balancing

Let the number of processors P = 3, k = 2, and L, = {0,1,2,3,4,5,6,7,8, 9}. There
is only 1 resulting equivalence class since the k — 2 (= 0) length common prefix is
null. The the number of 2-itemsets generated by an itemset, called the work load due
to itemset i, is given as w; =n—i—1,for 1 =0,...,n — L For example, itemset 0
contributes nine 2-itemsets {01, 02, 03, 04, 05,06, 07, 08, 09}. There are different ways
of partitioning this class among P processors.

Block partitioning : A simple block partition generates the assignment 4, =
{0,1,2}, A, = {3,4,5} and A; = {6,7,8, 9}, where A, denotes the itemsets assigned
to processor p. The resulting workload per processor iss Wo = 9+8+47 = 24,
W, =6+5+4=15and Wo =3+2+1=F6, where W, = Y, w; € Ap,. We can

clearly see that this method suffers from a load imbalance problem.

Interleaved partitioning : A better way is to do an interleaved partition, which
results in the assignment Ao = 0,3,6,9, A; = 1,4,7 and A2 = 2,5,8. The work load
is now given as Wp = 9+6+3 =18, W, =8+5+2=15and W, =7+4+1=12.

The load imbalance is much smaller, however it is still present.

Bitonic Partitioning (Single Equivalence Class): We propose a new partition-
ing scheme, called bitonic partitioning. This scheme is based on the observation that
the sum of the workload due to itemsets ¢ and (2P — ¢ — 1) is a constant:

’U)i+’LU27J_2'_1:n—i—1+(n—(2P—i—1)—1)'—"277,—27375—‘1
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We can therefore assign itemsets 7 and (n — 7 — 1) as one unit with uniform work

(2n — 2Pt —1).

183 190y

164
15
14

6(3)

Total Work Load
Total Work Load

Work Load

Ttemset Processors Processors
a) Work Load per Itemset b) Bitonic Partitioning <) Interleaved Partitioning

Figure 2: Bitonic Partitioning

Let 7 = n mod (2P). If r # 0, then there is an imbalance caused by the last r
itemsets. In this case n = 2Ps —r, where s is a positive integer. Let z = 2Ps. These
itemsets can be assigned to each processor as follows:

Ao ={yly=p+j(2P)ory=2P -p—-1+4,(2P), j =0, --,s} 1)
The remaining r itemsets are assigned as:
A, =A,U{y<nly=z+pory=2z+2P -1} (2)

Going back to our example, we first compute r = 10 mod 6 = 4. The assignments
to processors is given as: Ay = {0,5}, Ay = {1,4}, and A; = {2,3}. We call
this approach bitonic partitioning, since the itemsets are assigned to processors in an
increasing and decreasing fashion, i.e., we assign itemsets 0,1,2 to the 3 processors
followed by assigning itemsets 5,4, 3 (instead of 3,4, 5, as in the interleaved case). The
remaining 4 itemsets are assigned using equation 2. The final assignment is given as
Ao = {0,5,6}, A, = {1,4,7}, and A, = {2,3,8,9}, with corresponding workload
givenas Wo =9+4+3 =16 W, =8+45+2=15and W, =74+6+1 = 14.
This partition scheme is better than the interleaved scheme and results in almost
no imbalance. Figure 2 illustrates the difference between the interleaved and bitonic
partitioning schemes.




Bitonic partitioning (Multiple Equivalence Classes): Above we presented the
simple case of C;, where we only had a single equivalence class. In general we may
have multiple equivalence classes. Observe that the bitonic scheme presented above
is a greedy algorithm, i.e., we sort all the w; (the work load due to itemset ¢), extract
the itemset with maximum w;, and assign it to processor 0. Each time we extract the
maximum of the remaining itemsets and assign it to the least loaded processor. This
greedy strategy generalizes to the multiple equivalence class as well. For a single equiv-
alence class all the work loads are unique. However, for multiple classes all the values
may not be distinct. For example, let L, = {AB,AC,AD,AE,BC,BD,BE,DE}.
The sorted list based on the work load due to each itemset (ignoring those with no
work load) is given as: {wap = 3,wac = 2,wpc = 2,wap = lL,wpp = 1}. The
resulting assignment is Ag = {AB}, A1 = {AC,AD}, and A; = {BD}. The total
work is given as: Wy =3, Wi =2+1=3 and Wo =2+1=3.

Adaptive Parallelism

Let m be the total number of items in the database. Then there are potentially (Z)
large k-itemsets that we would have to count during iteration £ (however, fortunately

there are usually only a small number of large itemsets). (Z) is maximum at the

median value of k, after which it starts decreasing (for example, for (2) , we have the
values 1,5, 10,10, 5,1 for successive values of k). This suggests a need for some form
of dynamic or adaptive parallelization based on the number of large k-itemsets. If
there aren’t a sufficient number of large itemsets, then it is better not to parallelize
the candidate generation.

Parallel Hash Tree Formation

We could choose to build the candidate hash tree in parallel, or we could let the
candidates be temporarily inserted in local lists (or hash trees). This would have to
be followed by a step to construct the global hash tree.

In our implementation we build the tree in parallel. We associate a lock with each
leaf node in the hash tree. When processor 7 wants to insert a candidate itemset into
the hash tree it starts at the root node and hashes on successive items in the itemsets
until it reaches a leaf node. At this point it acquires a lock on this leaf node for
mutual exclusion while inserting the itemset. However, if we exceed the threshold of
the leaf, we convert the leaf into an internal node (with the lock still set). This implies
that we also have to provide a lock for all the internal nodes, and the processors will
have to check if any node is acquired along its downward path from the root. This
complication only arises at the interface of the leaves and internal nodes.

With this locking mechanism, each process can insert the itemsets in different
parts of the hash tree in parallel. However, since we start with a hash tree with the
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root as a leaf, there can be a lot of initial contention to acquire the lock at the root.
However, we did not find this to be a significant factor on 12 processors.

3.2 Support Counting

For this phase, we could either split the database logically among the processors with
a common hash tree, or split the hash tree with each processor traversing the entire
database. We will look at each case below.

Partitioned vs. Common Candidate Hash Tree

One approach in parallelizing the support counting step is to split the hash tree
among the processors. The decisions for computation balancing directly influence
the effectiveness of this approach, since each processor should ideally have the same
number of itemsets in it’s local portion of the hash tree. Another approach is to
keep a single common hash tree among all the processors. There are several ways of
incrementing the count of itemsets in the common candidate hash tree.

Counter per Itemset: Let assume that each itemset in the candidate hash tree has
a single count field associated with it. Since the counts are common, more than one
processor may try to access the count field and increment it. We thus need a locking
mechanism to provide mutual exclusion among the processors while incrementing the
count. This approach may cause contention and degrade the performance. however,
since we are using only 12 processors, and the sharing is very fine-grained (at the
itemset level), we found this to be the best approach. !

Partitioned vs. Common Database

We could either choose to logically partition the database among the processors,
or each processor can choose to traverse the entire database for incrementing the
candidate support counts.

lwe also implemented two other versions described below, but we did not get any improvement in
performance. 1) Separate Counters: we associate different count fields with each itemset, one per
processor. This would obviate the need for synchronization. However, it may cause false sharing,
since the counters would probably share the same cache line, causing the line to be exchanged
between the processors even though the processors are accessing different counters. A solution is
to pad the counters to the cache line. This eliminates false sharing, but it consumes more memory.
2) Local Counter Array: The other approach is to keep a ||Cy|| length local counter array per
processor, with an entry for each itemset. This avoids both contention and false sharing. We would
expect this to work well for large number of processors. However any gain in the support counting
step will be offset by the extra reduction step at the end.




Balanced Database Partitioning: In our implementation we partition the database
in a blocked fashion among all the processors. However, this strategy may not result
in balanced work per processor. This is because the work load is a function of the
Jength of the transactions. If l; is the length of the transaction ¢, then during iteration
k of the algorithm, we have to test whether all the (lk‘) subsets of the transaction are
contained in Cj. Clearly the complexity of the work load for a transaction is given as
O(min(ltk,ltl‘“k)), i.e., it is polynomial in the transaction length. This also implies
that a static partitioning won’t work. However, we could devise static heuristics to
approximate a balanced partition. For example, one static heuristic is to estimate
the maximum number of iterations we expect, say T'. We could then partition the
database based on the mean estimated work load for each transaction over all iter-
ations, given as (Y r_, (lk‘)) /T. Another approach is to re-partition the database in
each iteration. In this case it is important to respect the locality of the partition
by moving transactions only when it is absolutely necessary. We plan to investigate

different partitioning schemes as part of future work.

3.3 Parallel Data Mining: Algorithms

Based on the discussion in the previous section, we consider the following algorithms
for mining association rules in parallel:

e Common Candidate Partitioned Database (CCPD): This algorithm uses
a common candidate hash tree across all processors, while the database is logi-
cally split among them. The hash tree is built in parallel (see section 3.1). Each
processor then traverses its local database and counts the support (see section
3.2) for each itemset. Finally, the master process selects the large itemsets.

¢ Partitioned Candidate Common Database (PCCD): This has a par-
titioned candidate hash tree, but a common database. In this approach we
construct a local candidate hash tree per processor. Each processor then tra-
verses the entire database and counts support for itemsets only in its local tree.
Finally the master process performs the reduction and selects the large itemsets
for the next iteration.

Note that the common candidate common database(CCCD) approach results in
duplicated work, while the partitioned candidate partitioned database (PCPD) ap-
proach is more or less equivalent to CCPD. For this reason we did not implement
these parallelizations.

4 Optimizations

In this section we present some optimizations to the association rule algorithm. These
optimizations are beneficial for both sequential and parallel implementation.
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4.1 Hash Tree Balancing

Although the computation balancing approach results in balanced work load, it does
not guarantee that the resulting hash tree is balanced.

Balancing C; (No Pruning) : We'll begin by a discussion of tree balancing for
C,, since there is no pruning step in this case. We can balance the hash tree by using
the bitonic partitioning scheme described above. We simply replace P, the number
of processors with the fan-out F for the hash table. We label the n large 1-itemsets
from 0 to n — 1 in lexicographical order, and use P = F to derive the assignments

Ao, -+, Ar_; for each processor. Each A; is treated as an equivalence class. The hash
function is based on these equivalence classes, which is simply given as, h(z) = A;,
for i = 0,---,F. The equivalence classes are implemented via an indirection vector

of length n. For example, let Ly = {A,D,E,G,K,M,N,S,T,Z}. We first label
these as {0,1,2,3,4,5,6,7,8,9}. Assume that the fan-out F = 3. We thus obtain
the 3 equivalence classes Ay = {0,5,6}, A, = {1,4,7}, and A, = {2,3,8,9}, and
the indirection vector is shown in table 1. Furthermore, this hash function is applied
at all levels of the hash tree. Clearly, this scheme results in a balanced hash tree
as compared to the simple g(7) = 7 mod F hash function (which corresponds to the
interleaved partitioning scheme from section 3.1).

Label 0(112(1314|5|16[7]|8]9
Hash Value |0 |1 12[2}1({0|0|1]|2]2

Table 1: Indirection Vector

Balancing Ci(k > 2) : Although items can be pruned for iteration k£ > 3, we use
the same bitonic partitioning scheme for Cs and beyond. Below we show that even
in this general case bitonic hash function is very good as compared to the interleaved
scheme. Theorem 1 below establishes an upper and lower bound on the number of
itemsets per leaf for the bitonic scheme.

Theorem 1 Let k > 1 denote the iteration number, T = {0, ..., d — 1} the set of
items, F the fan-out of the hash table, T = {0, ..., F — 1} the set of equivalence
classes modulo F, T = T* the total number of leaves in Cy, and G the family of all
size k ordered subsets of I, i.e., the set of all k-itemsets that can be constructed from
items in L. Suppose 2-‘15: is an integer and %=, F > k. Define the bitonic hash function

27
h:T—T by:
h(i) = imod F if 0 < (¢ mod 2F) < F and 2F — 1 — (1 mod 2F) otherwise,
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and the mapping H : G — T from k-itemsets to the leaves of Cy by H(ay ..., ax) =
(h(ay), ..., h(ax)). Then for every leaf B = (by, ..., by) € T, the ratio of the num-
ber of k-itemsets in the leaf (|H (B)]||) to the average number of itemsets per leaf
(GI/ITN) is bounded above and below by the expression,

|H(B)] _

U7 < d
eI/ = ©

PROOF. Let w = d/2F. Partition Z into disjoint w intervals of size 2F. Split
each of the intervals into halves, each of size F, where the smaller half is called the
left block and the other the right block. Let B = (by,...,b;) € T be given. For each
i,1 < i <k, the elements in A~'(b;) are enumerated as

Nivp 2 b, Nig g & (2F — 1) = bi, Nopp, & 2F +bi, Nopp & (4F — 1) = by,
R Ni,w,L ie'f( _2)F+ b'n Nszdif (2Wf—1)—

Clearly, N;;r is in the jth left block and Ni;r in the jth right block. So, for

any A = (a1, ...,ax) € G, A € H™(B) if and only if there exist a sequence o =
[e1, ..., &) € {L, R}* and a nondecreasing sequence 7 = [ji, ..., jk] € {1, ..., wl*
such that

Nijrer < -+ < Nigjyyon- (3)
For every A = (ay, ..., ax) € H™(B), there is a unique (o,7) satisfying (3). So,

|H=1(B)| is the number of (o, 7) satisfying (3). Let us fix o and then partition o
into maximal subsequences, each consisting of a single value. Then, for every 7, (o,7)
satisfies (3) if and only if

prjpvcp < e < N‘ijq:cq (4)

holds for every maximal subsequence [j,, ..., jo]. Note here for any maximal subse-
quence [j,, - - -, Jgl, that (i) if p = g, then (4) holds regardless of ¢, (i) ifp+1=gq,
then (4) holds with ¢, = 0 and ¢, = 1, and (iii) if p < ¢ and if (4) holds, then
[¢py - - -, €] is nondecreasing, where L precedes R. Furthermore, we claim that (iv) if
p<q, then there are at most 2 choices for [c,, . . ., ¢,] to satisfy (4). Assume, by way of
contradiction, that there are three subsequences to satisfy (4) and take the largest and
the smallest of the three. By (iii), they are L*RP~7*1~* and L”RP~9*'~" for some u, v
with v < v — 2. Since (4) holds for both subsequences, we have Ny j, 1 < Nuti,juyy,L
and Ny i, r < Nut1,juy:,r- However, this is impossible because Ny,j, L < Nut1juqr,L if
and only if Ny .z > Nut1juss.R

Now from (iv) it follows that || H~*(B)|| is maximized if B guarantees the existence
of two [cp, -+ -, ¢,] to satisfy (4) for every maximal subsequence. An example of such
Bis (0,1, ---, k —1). For this specific example, (o, 7) satisfies (3) if and only if for
every maximal subsequence [y, ..., j] of o, [cp .-, cg] is either LP=4t or LP79R.
This implies that ||[H~*(0, - -+, k — 1)]| is equal to the number of ways of choosing a
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block from the 2w blocks k times under the constraint that each right block can be
chosen at most once. Thus,

k . k . Ww w —
IIH“(O,---,k—l)II=Z(w+;_1)(ﬁi)<z(w+§ 1)<k—i):(2 +kk 1)'

By dividing the right hand side by ||G||/||7|, which is (2121‘) /F*, we get the upper

+k— 14+(k=1)/2 2
bound (szikfl,}}')k = (l-l—-k—l/2w.17-€)k < (L g5)F < /2w

On the other hand, |H~!(B)|| is minimized if B does not allow to choose two
a’s from the same block. An example of such B is (0,0, ---, 0). For this specific
example, ||H~1(B)|| is (2;”) By dividing this number by ||G||/||T ]|, we get the lower

bound (Zu=ktlyk — (1 — E=lyk 5 o=F*/2w Thjq proves the theorem. |
2w

2w
We obtain, by a similar analysis, the same lower and upper bound for the inter-
leaved hash function also. However, the two functions behave differently. Note that

the average number of k-itemsets per leaf ||G||/||T || is (2127) JF* ~ £2—Z’,Lk Let a(w)
denote this polynomial. We say that a leaf has a capacity close to the average if its

capacity, which is a polynomial in w of degree at most k, is of the form @—Z’,Lk + B(w),
with B(w) being a polynomial of degree at most k — 2.

For the bitonic hash function, a leaf specified by the hash values (a; ..., aj) has
capacity close to a(w) if and only if a; # a;y; for all 2, 1 <4 <k —1. Thus, there are
F(F — 1)%1! such leaves, and so, (1 — F~1)*~! fraction of the leaves have capacity
close to a(w). Note also that clearly, (1 — F~!)*=! approaches 1.

On the other hand, for the interleaved hash function, a leaf specified by (a; ..., ax)
has capacity close to a(w) if and only if a; # a4, for all 7, and the number of ¢ such
that a; < a;y; is equal to (k — 1)/2. So, there is no such leaf if k£ is even. For odd
k > 3, the ratio of the “good” leaves decreases as k increases, achieving a maximum
of 2/3 when k = 3. Thus, at most 2/3 of the leaves achieve the average.

From the above discussion it is clear that while both the simple and bitonic hash
function have the same maximum and minimum bounds, the distribution of the num-
ber of itemsets per-leaf is quite different. While a significant portion of the leaves
are close to the average for the bitonic case, only a few are close in the simple hash
function case.

4.2 Short-circuited Subset Checking

Recall that while counting the support, once we reach a leaf node, we check whether
all the itemsets in the leaf are contained in the transaction. This node is then marked
as VISITED to avoid processing it more than once for the same transaction. A
further optimization is to associate a VISITED flag with each node in the hash tree.
We mark an internal node as VISITED the first time we touch it. This enables
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Candidate Hash Tree (C 3)
Hash Function: h(i) =i mod 2

DEPTH 0 BD | ACE
0 1
DEPTH 1 B,D |A,CE A,CE
2 | 3\ s\

D o
- F

A A,C.E A,C.E

DEPTH 2 B,D E B,D |ACE
8 9

G, B,D B,D
7 10 11 12 13
LEAVES BDE BCD|{ BCE l ABD| ABC | ACD” ACE |

ABE
ADE
CDE

Figure 3: Candidate Hash Tree (C3)

us to preempt the search as soon as possible. We would expect this optimization
to be of greatest benefit when the transaction sizes are large. For example, if our
transaction is T = {A, B,C,D,E}, k = 3, fan-out = 2, then all the 3-subsets of T
are: {ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE}. Figure 3 shows the
candidate hash tree Cs. We have to increment the support of every subset of T'
contained in Cs. We begin with the subset ABC, and hash to node 11 and process
all the itemsets. In this downward path from the root we mark nodes 1, 4, and
11 as visited. We then process subset ADB, and mark node 10. Now consider the
subset C DE. We see in this case that node 1 has already been marked, and we can
preempt the processing at this very stage. This approach can however consume a lot
of memory. For a given fan-out F, for iteration k, we need additional memory of size
F* to store the flags. In the parallel implementation we have to keep a VISITED
field for each processor, bringing the memory requirement to P - F*. This can get
very large, especially with increasing number of processors.

Reducing Memory Requirement

We now present a way to reduce the memory from F* to only k- F. This is based
on the observation that we only need to maintain a vector of length F at each depth
(which is equal to the current iteration, k). Since we generate the k subsets of a
transaction in lexicographical order, once we hash on item 1, with the hash value
h(i), at depth i, we are guaranteed to have looked at all subsets of the transaction
whose i-th item hashes to the same hash value. Thus we need only one array entry
for each hash value at a given depth, i.e, we only need an array of length equal to the
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0o(B,.D) 1(A,C,E) 0(B.D) 1(A,C,E) 0(B,D) 1(A,C.E) 0(B,D) 1(A,C.E)

DEPTH 0 1 1 1 1

DEPTH 1 2 —»1 2 —»| 2 2 | 2 2

DEPTH 2 3 3 3 4 3 4 4
SUBSET ABC SUBSET ABD SUBSET ACD SUBSET ACE

0B.D) 1(A,CE) 0(B,D) 1(A,CE) 0B,D) I(A,CE)

DEPTH 0 1 1 1 1 1 1

DEPTH 1 2 5 > 2 5 > 5 5

DEPTH 2 6 4 6 6 6 7
SUBSET BCD SUBSET BCE SUBSET BDE

Figure 4: Short Circuiting Subset Checking

fan-out F. Each time we go down a level we draw a new unique flag value from a
simple counter. The flag value remains the same while going up the hash tree. This
process is illustrated in figure 4. Let the transaction T = {A,B,C,D,E}, k = 3,
fan-out F = 2. So we need an array H of size k- F = 3 -2 = 6, for our short-circuit
optimization. The hash value of A,C, and E is 1, while the hash value of B and D
is 0. We have to look at all the 3-subsets of T in lexicographical order. The first
subset is ABC. We initialize our flag value counter to 1. We hash on item A at the
root of Cs (given in figure 3) at depth 0, set the array element #H(0,1) to 1 (note:
For H(0,1), the row represents the depth, and the column the hash value. We then
hash on B at depth 2, and set the H(1,0) to 2. After hashing on C at depth 3, we
mark H(2,1) with 3. At this point we are at the node 11 in C3. We process all the
items in its children (the leaf node). At depth 3, we look at the next item in the
itemset, D, and mark #(2,0) with 3. However, when we try to process ABE, we
see that H(2,1) has already been marked, so we move to the next subset ACD. We
~ have to move up a depth, i.e., go go back to depth 2 and look at the item, C', and
mark #H(1,1) with 2. When we descend to depth 3, we invoke a new flag value 4, and
mark #H(2,0) with 4. This process continues till all subsets have been processed. To
realize the effectiveness of this optimization, consider the case of CDFE. In this case
we can pre-empt the search at depth 0, since all hash values have been visited (see
the last step in figure 4). For the parallel version we keep a local copy of a k- F sized
array for each processor (total k- F - P) . This approach avoids the problem of false
sharing, and also conserves memory.
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5 Experimental Evaluation

5.1 Experimental Setup

D Total Size
100,000 2.6MB
100,000 4.3MB
100,000 6.2MB
100,000 7.9MB
400,000 17.1MB
800,000 34.6MB

1,600,000 | 69.8MB

Database T
T5.12.D100K 5
T10.14.D100K | 10
T15.14.D100K | 15
T20.16.D100K | 20
T10.16.D400K | 10
T10.16.D800K | 10
T10.16.D1600K | 10

S D OO O b B DN

Table 2: Database properties

All the experiments were performed on a 12-node SGI Power Challenge shared-
memory multiprocessor. Each node is a MIPS processor running at 100MHz. There’s
a total of 256MB of main memory. The primary cache size is 16 KB (64 bytes cache
line size), with different instruction and data caches, while the secondary cache is 1
MB (128 bytes cache line size). The databases are stored on an attached 2GB disk.
All processors run IRIX 5.3, and data is obtained from the disk via a NFS file server.

Large Itemset at Support = 0.5%

2500
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E) / ‘

«

S 1000 § Y

(0] by

5 4

£

=]

Z

500 |\,

12

iy 7
S

© Fr X
iJ

—h

(=}

lterations

Figure 5: Large Itemsets per Iteration

We used different synthetic databases with size ranging form 3MB to 70MB, gen-
erated using the procedure described in [4]. These database mimic the transactions
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in a retailing environment. Each transaction has a unique ID followed by a list of
items bought in that transaction. The data-mining provides information about the
set of items generally bought together. Table 2 shows the databases used and their
properties. The number of transactions is denoted as |D|, average transaction size
as |T|, and the average maximal potentially large itemset size as |/|. The number of
maximal potentially large itemsets |L| = 2000, and the number of items N = 1000.
We refer the reader to [4] for more detail on the database generation. All the experi-
ments were performed with a minimum support value of 0.5%, and a leaf threshold of
2 (i.e., max of 2 itemsets per leaf). Figure 5 shows the number of iterations and the
number of large itemsets found for different databases. In the following sections all
the results are reported for the CCPD parallelization. We do not present any results
for the PCCD approach since it performs very poorly, and results in a speed-down
on more than one processor.

5.2 Computation and Hash Tree Balancing

45
[] comp
40 B TREE
35 Il COMP-TREE

% Improvement

i

1248 1248 1248 1248 1248 12 48—— Processors
T5.12.D100K T10.14.D100K T15.14.D100K T10.16.D400K T10.6.D800K T10I6.D1600K —— Databases

Optimizations across Databases

Figure 6: Effect of Computation and Hash Tree Balancing

Figure 6 shows the improvement in the performance obtained by applying the compu-
tation balancing optimization (discussed in section 3.1), and the hash tree balancing
optimization (described in section 4.1). The figure shows the % improvement over
a run without any optimizations. Results are presented for different databases and
on different number of processors. We first consider only the computation balancing
optimization (COMP) using the multiple equivalence classes algorithm. As expected
this doesn’t improve the execution time for the uni-processor case, as there is nothing
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to balance. However, it is very effective on multiple processors. We get an improve-
ment of around 20% on 8 processors. The second column (for all processors) shows
the benefit of just balancing the hash tree (TREE) using our bitonic hashing (the
unoptimized version uses the simple mod interleaved hash function). Hash tree bal-
ancing by itself is an extremely effective optimization. It improves the performance
by about 30% even on uni-processors. On smaller databases and 8 processors however
it is not as good as the COMP optimization. The reason that the hash tree balancing
is not sufficient to offset inherent load imbalance in the candidate generation in this
case. The most effective approach is to apply both optimizations at the same time
(COMP-TREE). The combined effect is sufficient to push the improvements in the
40% range in the multiple-processor case. On 1 processor only hash tree balancing is
beneficial, since computation balancing only adds extra cost.

5.3 Short-circuited Subset Checking
25

10

% Improvement

.D800K T15.

T5.12.D100K T10.

# procs across Databases
Figure 7: Effect of Short-circuited Subset Checking

Table 7 shows the improvement due to the short-circuited subset checking optimiza-
tion with respect to the unoptimized version (in the unoptimized version only the
leaves are marked as visited, to avoid counting an itemset more than once). The
results are presented for different number of processors across different databases.
The results indicate that while there is some improvement for databases with small
transaction sizes, the optimization is most effective when the transaction size is large.
In this case we get improvements of around 25% over the unoptimized version.

To gain further insight into this optimization, consider figure 8. It shows the
percentage improvement obtained per iteration on applying this optimization on the
T20.16.D100K database. It shows results only for the uni-processor case, however
similar results were obtained on more processors. We observe that as the iteration k&
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Figure 8: % Improvement per Iteration (# proc = 1)

increases, there is more opportunity for short-circuiting the subset checking, and we
get increasing benefits of upto 60%. The improvements start to fall off at the high
end where the number of candidates becomes small, resulting in a small hash tree and
less opportunity for short-circuiting. It becomes clear that is an extremely effective
optimization for larger transaction sizes, and in cases where there are large number

of candidate k-itemsets.

5.4 Common Candidate Hash Tree: Contention
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Figure 9: % Improvement with NOLCK: Upper bound on Contention

Recall our discussion in section 3.2 on keeping a common hash tree among the pro-
cessors, with a support counter per itemset. Mutual exclusion for incrementing the
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counter is provided by a locking mechanism at the itemset level. Here we study the
amount of potential contention that may be caused in this approach. This is done by
eliminating the locks altogether (NOLCK) and measuring the execution time. Figure
9 shows the % difference in execution time of NOLCK with respect to the version with
the locking mechanism for each itemset. Note that the NOLCK time also eliminates
the extra instructions to acquire and release the locks, and thus represents an upper
bound on the amount of contention. For all the databases and processors we get a
difference within 4%, which leads us to conclude that contention is not a big problem
due to the fine-grained locking of the support counters at the itemset level.

5.5 Parallel Performance

CCPD CCPD : With Reading Time
12 T T ¥ T T 12 T T T T T
Ideal Ideal
T5.12.D100K £/ 75.12.D100K 124+
10 T10.14.D100K82 ~o- 10 T10.14.D100K42 = 1
T15.14.D100K.2 -~— T15.4.D100K 12 ~—
T20.16 D100K.2 -+~ T2046. 900K {2 -+
8t T1046.D400K 2 -2 8t T1046.D400K 12 -*- 1
g [6.0800K 2=~ o J6.D800K 12 -+
3 10.16.D1660K.t2 -+ E 10.6.01600K.42 -+~
0 6t i 0 6
] P 0
Q a
0 )
4 4t
2 ol
0 1 I Il L L 0 4 N | | N
0 2 4 8 8 10 12 0 2 4 6 8 10 12
Number of Processors Number of Processors

Figure 10: CCPD: Speed-up a) without reading time b) with reading time

Figure 10 presents the speedups obtained on different databases and different pro-
cessors for the CCPD parallelization. The results presented on CCPD use all the
optimization studied above ~ computation balancing, hash tree balancing and short-
circuited subset checking. The figure on the left presents the speed-up without taking
the initial database reading time into account. We observe that as the number of
transactions increase we get increasing speed-up, with a speed-up of more than 8 on
12 processors for the largest database (T10.16.D1600K, with 1.6 million transactions).
However, if we were to account for the database reading time, then we get speed-up
of only 4 on 12 processors.

Table 3 shows the total time spent reading the database, and the percentage of
total time this constitutes on different number of processors. The results indicate
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Reading % of Total Time

Database Time | P=1|P=2|P=4|P=8 P=12
T5.12.D100K 9.1s 39.9 43.8 52.6 56.8 59.0
T10.14.D100K 13.7s 15.6 22.2 29.3 36.6 39.8
T15.14.D100K 18.9s 8.9 14.0 21.6 29.2 32.8
T20.16.D100K 24.1s 4.9 8.1 12.8 18.6 224
T10.16.D400K 55.2s 16.8 24.7 36.4 48.0 53.8
T10.16.D800K 109.0s 19.0 29.8 43.0 56.0 62.9
T10.16.D1600K | 222.0s 19.4 28.6 44.9 59.4 66.4

Table 3: Database Reading Time

that on 12 processors upto 60% of the time can be spent just on I/O. This suggest
a great need for parallel I/O techniques for effective parallelization of data mining
applications since by its very nature data mining algorithms must operate on large
amounts of data.

6 Conclusions

In this paper, we presented a parallel implementation of the Aprior: algorithm on
the SGI Power Challenge shared memory multi-processor. We also discussed a set
of optimizations which include optimized join and pruning, computation balancing
for candidate generation, hash tree balancing, and short-circuited subset checking.
We then presented experimental results on each of these. Improvements of more than
40% were obtained for the computation and hash tree balancing. The short-circuiting
optimization was found to be extremely effective for databases with large transaction
sizes. Finally we reported the parallel performance of the algorithm. While we
achieved good speed-up, we observed a need for parallel I/O techniques for further
performance gains. .
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